推进技术 ›› 2020, Vol. 41 ›› Issue (1): 12-27.DOI: 10.13675/j.cnki. tjjs. 190442
李永1,周成1,吕征2,叶东东1,王戈1,丛云天1,刘镇星1
出版日期:
2020-01-20
发布日期:
2020-01-20
作者简介:
通信作者:李 永,博士,博导,研究员,研究领域为先进空间推进技术。E-mail:liyongaay@163.com
基金资助:
Online:
2020-01-20
Published:
2020-01-20
摘要: 大功率空间核电推进系统是空间核电源技术和大功率电推进技术的高度融合,具有高能量密度、超高比冲、较大推力的优势,可适用于超大型航天器轨道转移任务、远距离无人深空探测任务、载人火星等大型深空探测任务,能够极大地拓展人类深空探测的能力。本文针对大功率空间核电推进技术,对其工作原理和系统组成进行了介绍,同时开展了关键技术梳理,重点归纳了国内外在技术领域的研究历程和最新进展。
李永,周成,吕征,叶东东,王戈,丛云天,刘镇星. 大功率空间核电推进技术研究进展[J]. 推进技术, 2020, 41(1): 12-27.
LI Yong1,ZHOU Cheng1,LYU Zheng2,YE Dong-dong1,WANG Ge1,CONG Yun-tian1,LIU Zhen-xing1. Progress on High Power Space Nuclear Electric Propulsion Technology Development[J]. Journal of Propulsion Technology, 2020, 41(1): 12-27.
[1] Ronald J L. Strategic Technologies for Deep Space Transport[C]. Colorado: 39th Annucal AAS Guidance Navigation and Control Conference, 2016. [2] Palac D, Horvat G, Jankovskv R, et al. Nuclear Electric Propulsion Systems for Robotic and Human Exploration[C]. Orlando: 1st Space Exploration Conference: Continuing the Voyage of Discovery, 2005. [3] David J C, Richard R, Harold G. Ground Test Strategy for a Nuclear Thermal Propulsion Engine[C]. Ohio: AIAA Joint Propulsion Conference, 2018. [4] David R M, Stanley K B, Laura M B. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System[C]. Cleveland: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014. [5] Doherty M P, Holcomb R S. Summary and Recommendations on Nuclear Electric Propulsion Technology for the Space Exploration Initiative[R]. NASA-TM-105707, 1993. [6] Waldemar B, Elisa C. The Benefits of Using Nuclear Electric Propulsion in Space[C]. Toronto: 65th International Astronautical Congress, 2014. [7] Petukhovb V G, Popovb G A, Mogulkinb A I. A Realistic Concept of a Manned Mars Mission with Nuclear Electric Propulsion[J]. Acta Astronautica, 2015, 116: 299-306. [8] Koroteev A S, Akimov V N, Popov S A. The Project of Creation of Transport Power Module on the Basis of Nuclear Power Propulsion System of the Megawatttype[J]. Poliot Mag, 2011, (4): 93-99. [9] Frisbee R H. SP-100 Nuclear Electric Propulsion for Mars Cargo Missions[C]. Washington: Energy Technology Engineering Center, 1993. [10] Jupiter Icy Moons Orbiter (JIMO). An Element of the Prometheus Program[R]. JPL Publication 04-16 982-R06933. [11] Richard B. Disruptive Technologies for Power and Propulsion (DIPOP) Fission Nuclear Options[C]. Beijing: 64th International Astronautical Congress, 2013. [12] Tim T. MEGAHIT: Update on the Advanced Propulsion Roadmap for HORIZON2020[C]. Cumbria: Space Power Symposium, 2014. [13] Voss, Susan S. SNAP (Space Nuclear Auxiliary Power) Reactor Overview[R]. AFWL-TN-84-14. [14] Cockeram D J, Dieckamp H M, Wilson R F. SNAP-10A Program Including Design, Development and Flight Testing[C]. San Francisco: AIAA Second Annual Meeting, 1965. [15] Armijo J S, Josloff A T, Bailey H S, et al. SP-100 Progress[C]. Cleveland: AIAA/NASA/OAI Conference on Advanced SEI Technologies, 1991. [16] Marc A G, David P, Patrick R, et al. The Kilopower Reactor Using Stirling Technology (KRUSTY) Nuclear Ground Test Results and Lessons Learned[C]. Ohio: 2018 International Energy Conversion Engineering Conference, 2018. [17] Bennett G L. A Look at the Soviet Space Nuclear Power Program[C]. Washington: 24th lntersociety Energy Conversion Engineering Conference, 1989. [18] Gryaznov G M. 30th Anniversary of the Startup of Topaz—The First Thermionic Nuclear Reactor in the World [J]. Atomic Energy, 2000, 89(1): 510-515. [19] Polansky G, Schmidt G, Voss S, et al. Evaluating Russian Space Nuclear Reactor Technology For United States Applications[C]. Indianapolis: 30th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, 1994. [20] Mason L S, Schreiber J G. A Historical Review of Brayton and Stirling Power Conversion Technologies for Space Applications[R]. NASA/TM-2007-214976. [21] 王晓博. 千瓦级空间核反应堆电源发展现状[J]. 工程技术研究, 2017, 40(10). [22] Lee M. A Summary of Closed Brayton Cycle Development Activities at NASA[M]. Troy NY: NASA Glenn Research Center, 2009. [23] Davis J. Design and Fabrication of the Brayton Rotating Unit[R]. NASA CR-1870, 1972. [24] Harty R B, Otting W D, Kudija C T. Applications of Brayton Cycle Technology to Space Power[J]. IEEE Aerospace and Electronic Systems Magazine, 1994, 9(1):28-32. [25] Lee M, Arthur B, Luis P. Experimental Investigations from the Operation of a 2 kW Brayton Power Conversion Unit and a Xenon Ion Thruster[R]. NASA/TM—2004-212960. [26] El-Genk M S, Tournier J M. Noble-Gas Binary Mixtures for Closed-Brayton-Cycle Space Reactor Power Systems[J]. Journal of Propulsion and Power, 2007, 23(4):863-873. [27] Dostal V, Driscoll M J, Hejzlar P. A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors[R]. MIT-ANP-TR-100, 2002. [28] Wright S A, Conboy T M, Parma E J. Summary of the Sandia Supercritical CO2 Development Program[C]. Boulder: The 3rd International Symposium on Supercritical CO2 Power Cycles, 2011. [29] Mason L S, Poston D I. A Summary of NASA Architecture Studies Utilizing Fissions Surface Power Technology[R]. NASA TM-2011-216819. [30] Schreiber J G, Thieme L G. Accomplishments of the NASA GRC Stirling Technology Development Project[C]. Providence: 2nd International Energy Conversion Engineering Conference, 2004. [31] Wood J G, Carroll C, Matejczyk, et al. Advanced 80 We Stirling Convertor Phase II Development Progress[C]. San Francisco: 3rd International Energy Conversion Engineering Conference, 2005. [32] Furlong R, Shaltens R. Technology Assessment of DOE’s 55We Stirling Technology Demonstrator Convertor (TDC)[C]. Las Vegas: 35th Intersociety Energy Conversion Engineering Conference, 2000. [33] Timothy R. Free Piston Stirling Convertor Controller Development at NASA Glenn Research Center[C]. Portsmouth: 1st International Energy Conversion Engineering Conference, 2003. [34] Jeffery S R. A Free-Piston Stirling Engine/Linear Alternator Controls and Load Interaction Test Facility[C]. Providence: 2nd International Energy Conversion Engineering Conference, 2004. [35] Gary W, Neill L. Advanced 35 W Free-Piston Stirling Engine for Space Power Applications[J]. American Institute of Physics, 2003, 654(1): 83-88. [36] Mason L S, Poston D I. A Summary of NASA Architecture Studies Utilizing Fissions Surface Power Technology[R]. NASA TM-2011-216819. [37] Takeshi H. Preliminary Test Results on 200We Free Piston Stirling Engine Convertor[C]. Portsmouth: 1st International Energy Conversion Engineering Conference, 2003. [38] Takeshi H. Basic Research on Solar Stirling Power Technology for Future Space Applications[C]. New York: 34th Intersociety Energy Conversion Engineering Conference, 1999. [39] Harada N, Kien I C, Hishikawa M. Basic Studies on Closed Cycle MHD Power Generation System for Space Application[C]. Washington: Proceedings of the 35th AIAA Plasmadynamics and Lasers Conference, 2004. [40] Slavin V S, Bakos G C, Milovidova T A. Space Power Installation Based on Solar Radiation Collector and MHD generator[J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 49l-503. [41] Drake B G. Human Exploration of Mars Design Reference Architecture 5.0[R]. NASA-SP-2009-566. [42] Harada N. Closed Cycle MHD Power Generation System Without Alkali—Metal Seed[C]. New York:Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, 1996. [43] 杨 谢, 石 磊. 氦-氙混合气体物性对布雷顿循环影响分析[J]. 原子能科学技术, 2018, 52(8): 68-75. [44] 王建中, 王 波, 杨冬冬. 空间用气体轴承斯特林发电机的实验研究[C]. 南京:第十二届全国低温工程大会论文集, 2015. [45] 刘飞标, 朱安文, 唐玉华. 磁流体发电系统在空间电源中的应用研究[J]. 航天器工程, 2015, 24(1). [46] 刘飞标, 朱安文. 月球基地闭环核能磁流体发电技术初步研究[J]. 载人航天, 2017 , 23(2). [47] Randolph T M, Polk J E. An Overview of the Nuclear Electric Xenon Ion System (NEXIS) Activity[C]. San Diego: Space 2004 Conference and Exhibit, 2004. [48] Elliott, Fred. An Overview of the High Power Electric Propulsion (HiPEP) Project[C]. Fort Lauderdale: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2004 [49] Hall S J, Florenz R E, Gallimore A D, et al. Implementation and Initial Validation of a 100kW Class Nested-Channel Hall Thruster[C]. Cleveland: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014. [50] Florenz R E, Hall S J, Gallimore A D, et al. First Firing of a 100kW Nested-Channel Hall Thruster[C]. Washington: 33rd International Electric Propulsion Conference, 2013. [51] Casaregola C, Cesareti'i G, Andrenucci M. The European HiPER Programme: High Power Electric Propulsion Technology for Space Exploration [C]. Wiesbaden: 32nd International Electric Propulsion Conference, 2011. [52] Zurbach S, Lasgorceix P, Cornu N. HIPER: A 20kW High Power Hall Effect Thruster for Exploration[C]. Prague: 61st International Astronautical Congress, 2010. [53] Alexander V, Leonid E Z, Alexander E S. Feasibility of High Power Multi-Mode EPS Development Based on the Thruster with Anode Layer[C]. Wiesbaden: 32nd International Electric Propulsion Conference, 2011. [54] Albertoni R, Paganucci F, Rossetti P, et al. Experimental Study of a Hundred-Kilowatt-Class Applied-Field Magnetoplasmadynamic Thruster[J]. Journal of Propulsion and Power, 2013, 29(5): 1138-1145. [55] Adam B, Peter J, Georg H. Performance of 100 kW Steady State Applied-Field MPD Thruster[C]. Matsuyama: International Symposium on Space Technology and Science, 2017. [56] Longmier B, Squire J, Olsen C, et al. VASIMR? VX-200 Improved Throttling Range[C]. Atlanta: 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2013. [57] Cassady L D, Longmier B W, Olsen C S, et al. VASIMR Performance Results[C]. Nashville: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2010. [58] Jared P S, Mark D C, Franklin C D, et al. Run-time Accumulation Testing of the 100kW VASIMR ? VX-200SS Device[C]. Cincinnati: 2018 Joint Propulsion Conference, 2018. [59] Richard R H, Thomas M R. Mass and Cost Model for Selecting Thruster Size in Electric Propulsion Systems[J]. Journal of Propulsion and Power, 2012, 28(1): 166-175. [60] John A H, Gerald M H, John M S. Power Electronics Development for the SPT-100 Thruster[C]. Seattle: 23rd International Electric Propulsion Conference, 1993. [61] Richard R H, Thomas M R, David Y O, et al. Evaluation of a 4.5kW Commercial Hall Thruster System for NASA Science Missions[C]. San Jose: 42nd AIAA/ASME/ SAE/ASEE Joint Propulsion Conference & Exhibit, 2006. [62] Philip C T, Robert M, Steve W. Status of the NEXT 7kW Power Processing Unit[C]. Tucson: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005. [63] Luis R P, Karin E B, Walter S, et al. Development of High-Power Hall Thruster Power Processing Units at NASA GRC[C]. Orlando: 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015. [64] Luis R P, Robert J S, Michael V A. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices[C]. Washington: 33rd International Electric Propulsion Conference, 2013. [65] Raymond L, Alec D G. Constant-Power Performance and Plume Measurements of a Nested-Channel Hall-Effect Thruster[C]. Wiesbaden: 32nd International Electric Propulsion Conference, 2011. [66] Olivier D, David L M, ? Michael , et al. End-to-End Testing of the PPS?5000 Hall Thruster System with a 5kW Power Processing Unit[C]. Kobe-Hyogo: 34th International Electric Propulsion Conference, 2015. [67] Casaregola1 C, Cesaretti G, Andrenucci M. The European HiPER Programme for Future High Power Electric Propulsion Technologies[C]. Wiesbaden: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2011. [68] 王守国, 张 岩. SiC材料及器件的应用发展前景[J]. 中国自然杂志, 2011, 33(1). [69] Kuriki K, Morimoto S, Nakamaru K. Flight Performance Test of MPD Thruster System[C]. Las Vegas: 15th International Electric Propulsion Conference, 1981. [70] Polk J J, Pivirotto T. Alkali Metal Propellants for MPD Thrusters[C]. Cleveland: AIAA Conference on Advanced SEI Technologies, 1991. [71] Tikhonov V B, Semenikhin S A, Polk J E, et al. Performance of 130kW MPD Thruster with an External Magnetic Field and Li as Propellant[C]. Cleveland: 25th International Electric Propulsion Conference, 1997. [72] Kodys A D. Lithium Mass Flow Control for High Power Lorentz Force Accelerators[J]. AIP Conference Proceedings, 2001, 552(1). [73] Dan L. Investigation of Efficiency in Applied Field Magnetoplasmadynamic Thrusters[D]. New Jersey: Princeton University, 2012. [74] 鲁海峰, 杨鑫勇, 黄 涛, 等. 国外碘工质电推进技术研究综述[C]. 北京:中国宇航学会第十三届电推进会议, 2017. [75] Dressler R A, Chiu Y, Levandier D J. Propellant Alternatives for Ion and Hall Effect Thrusters[C]. Reno: 38th Aerospace Sciences Meeting and Exhibit, 2000. [76] Szabo J, Pote B, Paintal S, et al. Performance Evaluation of an Iodinei-Vapor Hall Thruster[J]. Journal of Propulsion and Power, 2012, 28(4): 848-857. [77] 高 俊, 李宗良, 邹达人, 等. 5kW 多模式电推进系统研究进展[C]. 北京:中国宇航学会第十三届电推进会议, 2017. [78] 苟浩亮, 张 兵, 曾昭奇, 等. 电推进系统比例供给单元关键技术研究[C]. 北京:中国宇航学会第十三届电推进会议, 2017. [79] 王海兴, 耿金越, 陈世强. 一种固体锂推进剂管路填充装置及其填充方法[P]. 中国专利: [80] 张云雁, 魏福智, 耿金越. 电推进MPDT锂推进剂供给方案研究及发展建议[C]. 北京:中国宇航学会第十三届电推进会议, 2017. [81] 肖开阳, 王仲远, 叶 胜. 基于MPD推力器的锂贮供系统方案研究[C]. 北京:中国宇航学会第十三届电推进会议, 2017. [82] Hyers R W, Tomboulian B N, P D Craveet al. Lightweight High-Temperature Radiator for Space Propulsion[C]. Huntsville: Advanced Space Propulsion Workshop, 2012. [83] Mason, Lee S. A Power Conversion Concept for the Jupiter Icy Moons Orbiter[J]. Journal of Propulsion and Power, 2004, 20(5): 902-910. [84] Jet Propulsion Laboratory. Project Prometheus Final Report[R]. 982-R120461, 2005. [85] Tomboulian B N, Hyers R W. High-Temperature Carbon Fiber Radiator for Nuclear Electric Power and Propulsion: Project Overview and Update[C]. Mississippi: Nuclear and Emerging Technologies for Space, 2014. [86] Walker D G, Vineyard E A, Linkous R. Modeling and Analysis of a Heat Exchanger with Carbon-Fiber Fin Structures[J]. International Journal of Heat and Mass Transfer, 2006, 49(13). [87] Hyers R W, Tomboulian B N, Crave P D, et. al. Lightweight, High Temperature Radiator for In-Space Nuclear-Electric Power and Propulsion[R]. M12-2292, 2014. [88] Mason L, Gibson M, Poston D. Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions[C]. Albuquerque: Nuclear and Emerging Technologies for Space, 2013. [89] Hay R, Anderson W. Water-Titanium Heat Pipes for Spacecraft Fission Power[C]. Orlando: International Energy Conversion Engineering Conference, 2015. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:北京7208信箱26分箱
邮政编码:100074
E-mail:tjjs@sina.com
访问总数:今日访问: 版权所有 © 《推进技术》编辑部